今天是欢迎访问西北农林科技大学研究生招生信息网
您现在的位置: 首页» 导师风采» 水土保持科学与工程学院

方怒放

发布日期:2021-08-20   阅读次数:

基本信息

方怒放博士为西北农林科技大学、中国科学院水利部水土保持研究所研究员,博士生导师,现任水土保持与荒漠化整治全国重点实验室副主任,兼任中国水保学会土壤侵蚀专委会副主任、中国土壤学会土壤侵蚀与水土保持专委会副主任等。主要研究领域包括流域水沙非线性变化、泥沙来源复合指纹示踪等。以第一或通讯作者在Communications Earth & Environment、Earth’s Future、Agricultural and Forest Meteorology、Water Resources Research等期刊发表论文70余篇,第一完成人获批发明专利5项,参编专著5部。是科技部重点领域创新团队“水土流失过程与生态调控”团队核心成员,曾获教育部自然科学二等奖、中国土壤学会优秀青年学者奖等。

工作经历

2012.07.01-2015.12.31,西北农林科技大学,助理研究员;

2016.01.01-2018.12.31,西北农林科技大学,副研究员;

2019.01.01-至今,西北农林科技大学,研究员;

2022.01.01-2024.12.31,黄土高原土壤侵蚀与旱地农业国家重点实验室,副主任;

2025.01.01-至今,水土保持与荒漠化整治全国重点实验室,副主任。

荣誉获奖

1. 复杂景观环境下土壤水蚀机理与过程模拟,教育部自然科学二等奖,2019,2/6;

2. 第七届中国土壤学会优秀青年学者奖,中国土壤学会优秀青年学者奖,2020,1/1;

3. 水土流失过程与生态调控创新团队,科技部重点领域创新团队奖,2018,8/9;

4. 黄土高原植被恢复水土保持效应及多功能提升生态修复模式,中国水土保持学会科学技术二等奖,2022,5/11。

科学研究

(一)科研项目:

1. 国家自然科学基金面上项目“植被恢复驱动的土壤结构-水文变化对流域侵蚀产沙的阻控机制”,2026-2029;

2. 国家自然科学基金面上项目“黄土丘陵区小流域切沟侵蚀与泥沙连通性耦合作用机制”,2022-2025;

3. 青海省重大科技专项“三江源水源涵养功能评估与能力提升关键技术研究”专题“三江源水源涵养功能评估技术研究”,2024-2027;

4. 陕西省中央引导地方科技发展资金课题项目“淤地坝水土保持碳汇效益评估及调控机制”,2024-2026;

5. 西北农林科技大学学院高水平创新团队建设计划项目“土壤侵蚀与水土保持创新团队”,2023-2025;

6. 国家自然科学基金重点项目“流域水文连通性对侵蚀产沙过程的影响与机理”子课题“流域侵蚀地块泥沙源汇识别”,2020-2024;

7. 国家重点研发计划“黄河流域水沙变化机理与趋势预测”子课题“小流域侵蚀产沙对景观格局演变的响应”,2017-2020;

8. 国家自然科学基金面上项目“黄土丘陵区小流域泥沙来源对侵蚀环境变化的响应”,2017-2020;

9. 国家自然科学基金青年基金项目“利用生物标志物和复合指纹分析法识别小流域泥沙来源”,2014-2016;

10. 中国科学院西部青年学者项目“黄土丘陵区小流域土壤有机碳输移特征”,2019-2021;

11. 西北农林科技大学黄河流域生态保护和高质量发展科技专项项目“黄河流域水土保持措施的水沙调控机制”,2022-2024;

12. 西北农林科技大学青年英才培育计划项目“土壤侵蚀与水土保持”,2020-2022;

(二)代表论著:

1. Wang Q., Fang N.F.*, Zeng Y., Yuan C.J., Dai W., Fan R., Chang H. 2025. Optimizing UAV-SfM photogrammetry for efficient monitoring of gully erosion in high-relief terrains. Measurement, 256, 118154.

2. Zhang Y., Zhang H.Y., Li J.J., Li X., Zhang Y.Y., Zeng Y., Dai W., Fan R., Liu Q.J.*, Fang N.F.* 2025. Dramatical variation in rill erosion resistance during two-year continuous straw incorporation on sloping farmland. Agriculture, Ecosystems & Environment, 382: 109500.

3. Dai W., Dang T.M., Zeng Y., Wang N.Q., Zong R.J., Ni L.S., Fang N.F.*, Shi Z.H. 2025. A quantitative basis for intersource differences in tracer concentrations for accurate sediment source fingerprinting. Land Degradation & Development, 36(7): 2203-2216.

4. Li J.J., Zhang H.Y., Zhao Y.J., Sun W.J., Xia J.B., Liu Q.J.*, Fang N.F.* 2025. Temporal variation and multiscale correlation between runoff and sediment on sloping farmland under straw incorporation in the northern rocky mountainous area of China. Journal of Hydrology, 657, 133069.

5. Fan R., Fang N.F.*, Zeng Y., Zong R.J., Wang Q., Zhang Y., Shi Z.H. 2025. Machine learning-assisted check dam planning on the Chinese Loess Plateau. Journal of Hydrology, 656, 133015.

6. Zong R.J., Fang N.F.*, Zeng Y., Lu X.X., Wang Z., Dai W., Shi Z.H. 2025. Soil conservation benefits of ecological programs promote sustainable restoration. Earth’s Future, 13(1), e2024EF005287.

7. Jing T.G., Zeng Y., Fang N.F.*, Dai W., Shi Z.H. 2025. A review of suspended sediment hysteresis. Water Resources Research, 61(1), e2024WR037216.

8. Zhang Y., Zeng Y., Zong R.J., Fang N.F.* 2024. Soil erosion under climate and land use changes in China: incorporating ecological policy constraints. Land Degradation & Development, 36(1): 184-196.

9. Wang Z.X., Yang D.M., Peng X., Chang H., Dai W., Zeng Y., Ni L.S., Deng L., Fang N.F.* 2024. Mechanical terracing regulates soil physicochemical properties and infiltration processes in the Loess Hilly Region of China. Land Degradation & Development, 35(9): 3181-3190.

10.  Jing T.G., Fang N.F.*, Ni L.S., Zhang F.B., Zeng Y., Dai W., Shi Z.H. 2024. Hydrological dynamics in response to vegetation restoration in a typical wind-water erosion crisscross catchment. Hydrological Processes, 38(11), e70009.

11.  Zeng Y., Jing T.G., Xu B.D., Yang X.K., Jian J.S., Zong R.J., Wang B., Dai W., Deng L., Fang N.F.*, Shi Z.H. 2024. Vectorized dataset of silted land formed by check dams on the Chinese Loess Plateau. Scientific Data, 11: 348.

12.  Dai W., Zeng Y., Jing T.G., Wang Z.X., Zong R.J., Ni L.S., Fang N.F.* 2023. Estimation of rainfall erosivity on the Chinese Loess Plateau: A new combination of the ERA5 dataset and machine learning. Journal of Hydrology, 624: 129892.

13.  Li J.J., Liu Q.J.*, Wang Y., Zhang H.Y., Li J.Q., Wang K.L., Geng J.B., Wang L.Z., Fang N.F.* 2023. Systematic evaluation of the effects of the length, depth, and amount of incorporated maize straw on rill flow velocity. Journal of Hydrology, 621: 129550.

14.  Fang N.F., Zeng Y., Ran L.S., Wang Z., Lu X.X.*, Wang Z.G., Yang X.K., Jian J.S., Yu Q., Ni L.S., Liu C., Yue C., Shi Z.H*. 2023. Substantial role of check dams in sediment trapping and carbon sequestration on the Chinese Loess Plateau. Communications Earth & Environment, 2023, 4(1): 65.

15.  Yuan C.J., Lin J.Q., Wang B., Yang D.M., Fang N.F.*, Ni L.S., Shi Z.H. 2023. Variable response of particles and inorganic carbon of two different soils during splash erosion. Catena, 224: 106958.

16.  Zeng Y., Meng X.D., Zhang Y., Dai W., Fang N.F.*, Shi Z.H. 2022. Estimation of the volume of sediment deposited behind check dams based on UAV remote sensing. Journal of Hydrology, 612: 128143.

17.  Zong R.J., Zeng Y., Fang N.F.*, Shi Z.H. 2022. Spatially optimized cropland distribution promotes sustainable farming and vegetation restoration in mountainous regions. Land Degradation & Development, 33(18): 3954-3964.

18.  Yang D.M., Fang N.F.*, Shi Z.H.*, Lin J.Q., Zong R.J. 2022. Modeling sediment transport and flow velocity of thawed soil with straw returning. Journal of Hydrology, 610: 127805.

19.  Zeng Y., Ran L.S., Fang N.F.*, Wang Z., Xu Z.C., Lu X.X., Yu Q., Wang L., Yu S.X., Shi Z.H*. 2022. How to balance green and grain in marginal mountainous areas? Earths Future, 10(5): e2021EF002552.

20.  Ran L.S., Yue R., Shi H.Y., Meng X.D., Chan C.N., Fang N.F.*, Shi Z.H. 2022. Seasonal and diel variability of CO2 emissions from a semiarid hard-water reservoir. Journal of Hydrology, 608: 127652.

21.  Lin J.Q., Fang N.F.*, Zhang Y., Zeng Y., Yang D.M., Dai W., Wang L., Shi Z.H. 2022. Dynamics of soil organic carbon in different-sized aggregates under splash erosion. Journal of Soils and Sediments, 22(6): 1713-1723.

22.  Jing T.G., Fang N.F.*, Zeng Y., Huang X., Shi Z.H. 2022. Catchment properties controlling suspended sediment transport in wind-water erosion crisscross region. Journal of Hydrology-Regional Studies, 39: 100980.

23.  Zeng Y., Fang N.F.*, Shi Z.H*. 2020. Effects of human activities on soil organic carbon redistribution at an agricultural watershed scale on the Chinese Loess Plateau. Agriculture Ecosystems & Environment, 303: 107112.

24.  Zeng Y., Yang X.K., Fang N.F.*, Shi Z.H. 2020. Large-scale afforestation significantly increases permanent surface water in China’s vegetation restoration regions. Agricultural and Forest Meteorology, 290: 108001.

25.  Zeng Y., Fang N.F.*, Shi Z.H., Lu X.X., Wang Z.G. 2020. Soil organic carbon redistribution and delivery by soil erosion in a small catchment of the Yellow River basin. Journal of Geophysical Research-Biogeosciences, 125(5): e2019JG005471.

26.  Ni L.S., Fang N.F.*, Shi Z.H., Tan W.F. 2019. Mid-infrared spectroscopy tracing of channel erosion in highly erosive catchments on the Chinese Loess Plateau. Science of the Total Environment, 687: 309-318.

27.  Fang N.F., Zeng Y., Ni L.S., Shi Z.H.* 2019. Estimation of sediment trapping behind check dams using high-density electrical resistivity tomography. Journal of Hydrology, 568: 1007-1016.

28.  Wang W.D., Fang N.F.*, Shi Z.H., Lu X.X. 2018. Prevalent sediment source shift after revegetation in the Loess Plateau of China: Implications from sediment fingerprinting in a small catchment. Land Degradation & Development, 29(11): 3963-3973.

29.  Wang Y.X., Ran L.S., Fang N.F.*, Shi Z.H.* 2018. Aggregate stability and associated organic carbon and nitrogen as affected by soil erosion and vegetation rehabilitation on the Loess Plateau. Catena, 167: 257-265.

30.  Fang N.F., Wang L., Shi Z.H.* 2017. Runoff and soil erosion of field plots in a subtropical mountainous region of China. Journal of Hydrology, 552: 387-395.

31.  Wang Y.X., Fang N.F.*, Tong L.S., Shi Z.H. 2017. Source identification and budget evaluation of eroded organic carbon in an intensive agricultural catchment. Agriculture Ecosystems & Environment, 247: 290-297.

32.  Ni L.S., Fang N.F.*, Shi Z.H., Chen F.X., Wang L. 2017. Validating a basic assumption of using Cesium-137 method to assess soil loss in a small agricultural catchment. Land Degradation & Development, 28(5): 1772-1778.

33.  Chen F.X., Fang N.F.*, Shi Z.H. 2016. Using biomarkers as fingerprint properties to identify sediment sources in a small catchment. Science of the Total Environment, 557: 123-133.

34.  Chen F.X., Zhang F.B., Fang N.F.*, Shi Z.H. 2016. Sediment source analysis using the fingerprinting method in a small catchment of the Loess Plateau, China. Journal of Soils and Sediments, 16(5): 1655-1669.

35. Fang N.F., Chen F.X., Zhang H.Y., Wang Y.X., Shi Z.H.* 2016. Effects of cultivation and reforestation on suspended sediment concentrations: a case study in a mountainous catchment in China. Hydrology and Earth System Sciences, 20(1): 13-25.

36.  Fang N.F., Shi Z.H.*, Chen F.X., Zhang H.Y., Wang Y.X. 2015. Discharge and suspended sediment patterns in a small mountainous watershed with widely distributed rock fragments. Journal of Hydrology, 528: 238-248.

37.  Fang N.F., Shi Z.H.*, Chen F.X., Wang Y.X. 2015. Partial least squares regression for determining the control factors for runoff and suspended sediment yield during rainfall events. Water, 7(7): 3925-3942.

38.  Fang N.F., Shi Z.H.*, Yue B.J., Wang L. 2013. The characteristics of extreme erosion events in a small mountainous watershed. Plos One, 8(10): e76610.

39.  Fang N.F., Shi Z.H.*, Li L., Guo Z.L., Liu Q.J., Ai L. 2012. The effects of rainfall regimes and land use changes on runoff and soil loss in a small mountainous watershed. Catena, 99: 1-8.

40.  Fang N.F., Shi Z.H.*, Li L., Jiang C. 2011. Rainfall, runoff, and suspended sediment delivery relationships in a small agricultural watershed of the Three Gorges area, China. Geomorphology, 135(1-2): 158-166.

41. 常恒, 方怒放*, 王卓霄, 戴伟, 彭心. 2025. 不同梯田修筑方式下土壤分离能力变化及影响因素. 水土保持研究, 32(03).

42. 王凯丽, 张含玉, 方怒放*, 刘前进, 李靖江. 2024. 不同厚度降解地膜对坡耕地溶解态氮磷流失的影响. 水土保持学报, 38(2), 406-413.

43. 李智广, 成辉, 方怒放*, 曾奕. 2023. 淤地坝保碳、减排、增汇作用与其能力评估. 水土保持学报, 37(4), 1-6.

44. 王琼, 方怒放*. 2022. 切沟形态特征无人机倾斜摄影测量. 农业工程学报, 38(08), 107-114.

45. 时亚坤, 曾奕, 郭金金, 方怒放*. 2022. 黄土高原新一轮退耕还林草工程对粮食生产的影响. 水土保持研究, 29(03), 419-425.

46. 孟祥冬, 曾奕, 方怒放*. 2022. 地形和土地利用对黄土丘陵沟壑区土壤侵蚀速率的影响. 水土保持通报, 42(05), 25-32+40.

47. 林俊秋, 杨大明, 方怒放*, 史志华. 2022. 坡面细沟侵蚀过程中的水动力特性变化. 水土保持研究, 29(01), 1-7.

48. 郭金金, 方怒放*, 刘前进, 张含玉. 2021. 小麦秸秆粉碎还田配施氮肥与多酚对土壤侵蚀阻力的影响. 水土保持学报, 35(04), 122-128.

(三)发明专利:

1. 一种土壤样品自动化制备系统(ZL202310228806.5),2024;

2. 一种模拟土壤侵蚀过程的碳排放监测装置以及方法(ZL202310336768.5),2023;

3. 淤地坝泥沙淤积量的测量方法、装置、计算机及存储介质(ZL202111676560.5),2023;

4. 一种土壤饱和导水率自动测定装置(ZL201510110231.2),2019;

5. 一种利用离心机法测量土壤水分特征曲线的系统及测量方法(ZL201510113276.5),2018.

联系方式

通讯地址:陕西省咸阳市杨陵区西农路26号水土保持研究所全重室北楼388办公室

邮政编码:712100

E-mail: fnf@ms.iswc.ac.cn